ESTO	Scrivere il prodotto d reazione tra Be e H	ii Scrivere il prodotto di I reazione tra As e Cl		Scrivere il di prodotto di reazione tra Be e S	Scrivere il prodotto di reazione tra S e Br	Bilanciare la seguente reazione di ossidoriduz ione: CoO ₂ + H ⁺ + Pd - > Co ³⁺ + H ₂ O + Pd ²⁺	(in mol) di Zr(s) necessari a per - produrre 185 g di	ottenuto dalla reazione della quantità del	Indicare il materiale di degli	Disegna la formula di CH ₃ CI. Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://radchemla b.unipv.it/CovidW ars/test1.html	Indicare la geometria		Indicare la geometria del TETRAFLUORURO DI ZOLFO	Disegna la formula di COS. Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://radchemla b.unipv.it/CovidW ars/test3.html	geometria dell'atomo	(Hg ₂ SO ₄) avente	S°(CO(g))=+0.1979 kJ/molK, S°(SO ₃ (g))=+256.77 J/molK,	Calcolare il pH di una soluzione 1.7 di acido formico (metanoico) (HCOOH) avente Ka=1.7x10 ⁻⁴
ISULTATO UNTI	BeH2	AsCI3 AsCI5	BH3	BeS	SBr2 SBr4 SBr6	281241	0.58 mol	82567 J 2	Zr Pt 2	[H]C([H])([H])CI	tetraedrica 1	FS(F)(F)F	bipiramidale a base triangolare 1	O=C=S	lineare	0.0054 mol/l	0.118 kJ/molK 3	1.7 3
ESTO	Scrivere il prodotto d reazione tra S e H	Scrivere il prodotto di reazione tra Br e Cl	prodotto o reazione tra Sr e H	BeS	В	$NO_3^- + H^+ + Co \rightarrow NO + H_2O + Co^{2+}$	(in mol) di Sn(s) necessari a per produrre 957 g di U ⁴⁺ (aq)	ottenuto dalla reazione della quantità del	Indicare il materiale di degli / elettrodi:	Disegna la formula di PH ₃ . Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://radchemla b.unipv.it/CovidW ars/test4.html	dell'atomo centrale di PH ₃	test5.html	Indicare la geometria del TRICLORURO DI BROMO	formula di CH ₂ Cl ₂ . Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://radchemla b.unipv.ti/CovidWars/test6.html	geometria dell'atomo / centrale d CH ₂ Cl ₂	calcio solfito (CaSO ₃) avente i KPS=3.1x10 ⁻⁷	Calcolare l'entalpia della reazione (da bilanciare): $B_2H_4(g)+O_2(g) \rightarrow B_2O_3(s)+H_2O(l)$ Conoscendo i valori: $\Delta H^{\alpha}([B2H6(g))=+35$ 61 kJ/mol, $\Delta H^{\alpha}([B2O3(s)]=-1272$ kJ/mol, $\Delta H^{\alpha}([H2O(l)]=-285.83$ kJ/mol	una soluzione 1.2 I di metilammina (CH3NH2) avente Kb=4.4x10 ⁻⁴
ISULTATO UNTI	H2S	BrCl BrCl3 BrCl5 BrCl7	SrH2 1	B2S3	BCI3	283243	2.01 mol	174612 J	Sn Pt 2	[H]P([H])[H] 1	tetraedrica 1	CIBr(CI)CI	bipiramidale a base triangolare 1	[H]C([H])(CI)CI	tetraedric	a 5.56E-4 mol/ 4	I -2162.61 kJ/mol 4	12 3
еѕто	Scrivere il prodotto di reazione	li Scrivere il prodotto di	Scrivere il prodotto c reazione		Scrivere il prodotto di reazione tra Ci e	$CIO_4^- + Ti_2O_3 \rightarrow CIO_3^- +$	Calcolare la quantità (in g) di PbO ₂ (s) necessari a per produrre 738 g di	Calcolare il lavoro elettrico ottenuto dalla reazione delli quantità del punto precedente sapendo che il potenziale o	a e Indicare il materiale di degli	Disegna la formula di CH ₃ NH. Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://www-5.unipv.it/dondu/php/prove/restE1.	Indicare la geometria dell'atomo centrale di	Disegna la formula del ESAFLUORURO DI SELENIO. Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://www- 5.unipv.it/dondi/php	Indicare la geometria del	Disegna la formula di TeF ₄ . Clicca sul link sotto, una volta disegnata copia il codice generato con lo smile e incollalo sotto. http://www.b.unipv.i/dondli/php/prove/testE3.	geometria dell'atomo centrale d	Calcolare la solubilità in mol/l del sale mercurio (Nota: si dissocia dando Hg ₂ 2 ²⁺) cloruro (Hg ₂ Ol ₂) avente i KPS=1.43x10	Calcolare l'entalpia della reazione (da bilanciare): N ₂ O ₄ (g) + H ₂ O(g) -> HNO ₃ (g) Conoscendo valori:ΔHF((NZOS(g))=+1' .30 kJ/mol, ΔHF((HZO(g))=-241.82): kJ/mol, ΔHF((HNO3(g))=-241.82): kJ/mol, ΔHF((HNO3(g))=-241.82)	i I Calcolare il pH di una soluzione 1.1 di acido benzolio (C ₆ H ₂ COOH)
	tra B e F	reazione tra Li e H	tra B e H	As e F	N	TiO ₂	Ge4+(aq)	cella è 0,45 V	/ elettrodi:	html	CH ₂ NH	/prove/testE2.html	ESAFLUORURO DI SELENIO	html	TeF₄	-18	134.31 kJ/mol	avente Ka=6.3x10
SULTATO		reazione tra Li e H LiH	tra B e H BH3	As e F AsF3 AsF5	**	TiO ₂	Ge ⁴⁺ (aq) 4860 g	cella è 0,45 V	/ elettrodi: Pt e Ge		-	/prove/testE2.html re F[Se](F)(F)(F)(F)F		html F[Te](F)(F)F			134.31 kJ/mol o-38,1 kJ/mol	avente Ka=6.3x10